100(t)=-16t^2+80t+32

Simple and best practice solution for 100(t)=-16t^2+80t+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100(t)=-16t^2+80t+32 equation:



100(t)=-16t^2+80t+32
We move all terms to the left:
100(t)-(-16t^2+80t+32)=0
We get rid of parentheses
16t^2-80t+100t-32=0
We add all the numbers together, and all the variables
16t^2+20t-32=0
a = 16; b = 20; c = -32;
Δ = b2-4ac
Δ = 202-4·16·(-32)
Δ = 2448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2448}=\sqrt{144*17}=\sqrt{144}*\sqrt{17}=12\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{17}}{2*16}=\frac{-20-12\sqrt{17}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{17}}{2*16}=\frac{-20+12\sqrt{17}}{32} $

See similar equations:

| 7x/8=x/5+27 | | 0.56=x528 | | 3.2-x=1.6 | | −2a+5=−5a+4 | | f+1/4=7/4 | | a+½=1 | | 14(m+3)=24 | | 0=–2t^2+t+6 | | x-(x-1)=6x | | 4+.3r=r-8 | | 29/7=87/x | | 4n-2n=-5n(2n-8) | | 29/7=87/t | | 0.2m=-13(m+300) | | 4+.3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333r=r-8 | | -2m=131/40 | | 2c-11=c/3+9 | | R^2+18=10r | | 27=1.5x+x | | 2(x+1)+8(x-1)=5x | | 75+7(x+1)=90 | | 1/2(x+1/4)=7/8 | | t-1/7=20/21 | | 69+7(x+1)=90 | | ((4x-3)/6)+x/4=x-2 | | 3(5+1.4x)=3x | | 4(x=+3)=-8 | | 7(x-1)=1-(x+9) | | 5(3x+9)=7x+5-2x | | 4x-7=105 | | -2(5x+1=48 | | 243-x=95 |

Equations solver categories